

A Monthly e Magazine
ISSN:2583-2212

Popular Article

February, 2026 Vol.6(2), 373-380

Litter Management During Rainy Season in Poultry Farming: A Technical and Practical Guide

¹Dr. Eliza Thote, ²Dr. Samiksha Suroshe, ³Dr. Ajay Mendake

¹ Assistant Prof., Department of Livestock Farm Complex, Shourabh College of veterinary science, Kheda, RAJUVAS, Rajasthan

² Assistant Prof., Department of Veterinary Pathology, Shourabh College of veterinary science, Kheda, RAJUVAS, Rajasthan

³ Assistant Prof., Department of Livestock Production Management, Shourabh College of veterinary science, Kheda, RAJUVAS, Rajasthan

[DOI:10.5281/ScienceWorld.18513706](https://doi.org/10.5281/ScienceWorld.18513706)

Introduction

In modern poultry production systems, particularly under the deep litter housing method, litter forms the immediate environment in which birds live throughout their production cycle. From the first day of placement until marketing, broilers and layers remain in constant contact with litter. Therefore, litter quality has a direct influence on bird comfort, growth performance, immunity, welfare, carcass quality, and overall farm profitability.

During the rainy season, poultry farmers frequently encounter severe challenges related to excess moisture, increased humidity, wet floors, poor ventilation, ammonia accumulation, and microbial growth. These conditions cause deterioration of litter quality, leading to respiratory diseases, footpad dermatitis, breast blisters, reduced feed efficiency, and increased mortality. Proper litter management during this period is thus not merely a hygiene practice but a critical component of biosecurity, welfare management, and sustainable poultry production.

This article discusses the scientific basis of litter management, desirable characteristics of good litter, moisture control strategies, evaluation techniques, common rainy-season problems, and practical management approaches with technical clarity and field-level applicability.

Role of Litter in Poultry Production

Litter serves multiple important biological and environmental functions in poultry houses:

373

1. **Moisture Absorption:** Litter absorbs water from droppings, spilled drinking water, and ambient humidity, thereby maintaining a dry surface for birds.
2. **Thermal Insulation:** It insulates birds from cold and damp floors, reducing heat loss and improving comfort.
3. **Microbial Dilution:** By absorbing and dispersing droppings, litter dilutes harmful pathogens and reduces direct contact between birds and faecal matter.
4. **Behavioural Enrichment:** Dry, friable litter allows birds to scratch, forage, and dust-bathe, which promotes natural behaviour and reduces stress.
5. **Ammonia Control:** Proper litter moisture management limits microbial breakdown of uric acid into ammonia gas, protecting respiratory health.

Because of these functions, litter is considered part of the bird's living ecosystem, and its management plays a decisive role in determining flock performance.

Desirable Characteristics of Ideal Poultry Litter

An ideal litter material must possess specific physical, chemical, and biological characteristics:

1. **High Absorptive Capacity:** To quickly absorb moisture from droppings and spilled water.
2. **Rapid Drying Ability:** To allow evaporation of moisture under proper ventilation.
3. **Light Weight with Medium Particle Size:** To ensure ease of handling, good aeration, and bird comfort.
4. **Low Dust Content:** To prevent respiratory irritation and eye problems.
5. **Low Caking Tendency:** To remain loose and friable rather than forming hard crusts.
6. **Freedom from Toxic Substances:** Free of chemical residues, tannins, pesticides, and sharp splinters.
7. **Resistance to Mold Growth:** To prevent fungal infections such as aspergillosis.
8. **Thermal Insulation:** To reduce heat loss from the birds to the ground.
9. **Support for Natural Behaviour:** Should stimulate scratching, pecking, and dust bathing.

Common Litter Materials Used in Poultry Farming

The choice of litter material depends on regional availability, cost, and climatic conditions.

Common materials include:

1. **Paddy Husk (Rice Hulls):** Widely used in India; moderately absorbent, economical, and easy to manage.

2. **Sawdust:** Highly absorbent but may produce dust if too fine.
3. **Wood Shavings:** Comfortable and absorbent, though sometimes costly.
4. **Coir Pith:** Good moisture absorption but requires proper drying before use.
5. **Peanut Hulls and Sunflower Husks:** Suitable alternatives but tend to cake under wet conditions.
6. **Chopped Straw:** Acceptable if chopped below 2 cm; wheat straw is better than barley straw due to better absorbency.
7. **Paper Litter and Pellets:** Useful in some systems but may cake easily if wet.
8. **Sand:** In certain climates, sand is used for its durability and low bacterial load, though moisture management is challenging.

Each material differs in absorbency, drying rate, microbial load, and caking tendency, so selection must be based on climatic conditions and farm management capacity.

Ideal Moisture Level and Its Biological Significance

The optimal moisture content of litter is approximately 25%. Maintaining moisture within this range is crucial because:

- 1) **Below 20% moisture:** Litter becomes excessively dry and dusty. Dust particles irritate the bird's respiratory tract and eyes, impair mucociliary clearance, and increase susceptibility to respiratory infections such as chronic respiratory disease (CRD) and colibacillosis.
- 2) **Above 40% moisture:** Litter becomes wet and compacted, leading to caking. Wet litter favours microbial growth and enzymatic degradation of uric acid into ammonia, resulting in toxic gas accumulation inside the poultry house.

Excess moisture also increases the incidence of:

- Footpad dermatitis
- Hock burns
- Breast blisters
- Feather soiling
- Reduced carcass quality and condemnation losses

Ammonia Production and Its Impact on Poultry Health

Ammonia is produced when microorganisms degrade uric acid present in poultry droppings under moist, warm, and anaerobic conditions. The permissible level of ammonia in poultry houses is below 20 ppm. Levels exceeding this threshold cause:

- Irritation and inflammation of eyes (conjunctivitis)
- Damage to respiratory mucosa, reducing disease resistance

- Reduced feed intake and growth rate
- Increased susceptibility to viral and bacterial infections
- Poor litter and air quality for workers

During the rainy season, high humidity and reduced ventilation aggravate ammonia buildup, making litter moisture control an essential health intervention.

Effect of Litter Quality on Bird Performance and Welfare

Several scientific studies demonstrate that birds reared on dry, friable litter exhibit:

- Higher body weight gain
- Better feed conversion ratio
- Lower mortality and morbidity
- Reduced footpad lesions and breast blisters
- Improved uniformity
- Better carcass quality and market value

Conversely, poor litter conditions lead to economic losses through reduced productivity, increased medication costs, higher condemnation rates at processing plants, and compromised animal welfare standards.

Evaluation of Litter Quality in the Poultry House

1. Hand Squeeze Test

A simple and effective method for farmers and farm supervisors:

- Take a handful of litter and squeeze firmly.
- If the litter loosely binds and falls apart easily → moisture is optimal.
- If it forms a tight clump → litter is too wet and corrective action is needed.

2. Visual and Sensory Assessment

- Dark colour, foul odour, sticky texture, and crust formation indicate excessive moisture.
- Presence of dust clouds during bird movement indicates overly dry litter.

3. Location of Assessment

Litter moisture should be evaluated in central areas of the shed rather than only near drinkers or walls to obtain a true representation of flock conditions.

Rainy Season Challenges in Litter Management

During the monsoon period, poultry farmers encounter specific difficulties:

- 1) High Environmental Humidity:** Reduces evaporation rate from litter.
- 2) Roof Leakages and Seepage:** Allow rainwater to enter sheds.
- 3) Wet Floors:** Increase moisture migration into litter from the ground.

- 4) **Water Spillage from Drinkers:** Common due to bird activity and improper height adjustment.
- 5) **Poor Ventilation:** Often adopted mistakenly to reduce rain entry but worsens humidity buildup.
- 6) **Microbial and Fungal Growth:** Moist environments promote Aspergillus and other fungi, increasing risk of respiratory diseases.

These challenges make litter management during rainy season a dynamic and continuous process rather than a one-time activity.

Technical and Practical Strategies for Litter Management During Rainy Season

1. Proper Litter Depth

- **Broilers:** 5–7 cm initially, increasing to 8–10 cm during colder or wetter periods.
- **Layers and breeders:** 8–10 cm depending on stocking density and climate.

Adequate depth improves moisture absorption and thermal insulation.

2. Daily Raking and Turning

Regular raking:

- Breaks surface crusts
- Enhances aeration
- Promotes drying
- Prevents ammonia pockets

Special attention should be given to areas around drinkers, feeders, and corners.

3. Water Management

- Adjust drinker height to bird eye level to reduce spillage.
- Repair leaking nipples or bell drinkers immediately.
- Avoid overpressure in nipple lines.
- Ensure proper drainage around sheds to prevent seepage.

4. Removal and Replacement of Wet Litter

- Wet patches should be removed promptly.
- Replace with fresh, dry litter.
- Localized replacement is often more economical than complete litter change.

5. Chemical Amendments

Litter treatment agents help reduce moisture and ammonia:

- Hydrated lime or 5% ammonium sulphate @ 1 kg per 9 m²

- These compounds lower pH, inhibit ammonia volatilization, and reduce microbial activity.

However, excessive use should be avoided as it may irritate bird's skin and respiratory system.

6. Ventilation and Airflow Management

Even during rainy weather:

- Adequate ventilation must be maintained to remove moisture-laden air.
- Side curtains should be adjusted to allow airflow while preventing rain entry.
- Roof vents, exhaust fans, and ridge openings improve moisture removal.

Proper ventilation is the most critical factor in controlling litter moisture during monsoon conditions.

7. Floor and Structural Management

- Ensure raised floors and proper drainage outside sheds.
- Repair cracks, leaks, and damaged roofs.
- Use plastic sheets or rubber liners under litter if groundwater seepage is common.

8. Stocking Density Adjustment

High bird density increases moisture load through respiration and droppings. Slight reduction in stocking density during humid seasons improves litter condition, air quality, and bird welfare.

9. Seasonal Litter Depth Adjustment

- During rainy and winter seasons, slightly deeper litter helps absorb moisture and insulate birds.
- During hot and dry seasons, thinner litter layers improve cooling and ventilation.

Alternative Flooring Systems

Where good litter material is scarce or expensive, plastic slatted floors may be used. These allow manure and spilled water to pass through, reducing bird contact with moisture. However:

- Air circulation beneath slats must be adequate.
- Slat hole size must prevent leg injuries.
- Fly breeding and manure management require special attention.

When properly designed and managed, slatted systems can support good welfare and performance, though deep litter remains the most economical and farmer-friendly system in most regions.

Utilization of Poultry Litter After Use:

Spent poultry litter is a valuable organic resource rather than waste.

1. Organic Fertilizer

- Nutrient content: Approximately 3:2:2 NPK
- Nearly 10 times richer than cow dung
- Improves soil fertility, microbial activity, and crop productivity
- Reduces dependence on chemical fertilizers

2. Energy Generation

- Used for biogas production
- Can generate electricity and thermal energy

3. Aquaculture

- Wet poultry manure can fertilize fish ponds, stimulating plankton growth for fish feed.

4. Feed Ingredient

- After proper drying and processing, it can be incorporated in cattle, pig, or poultry rations under regulated conditions.

5. Recycling as Litter

- Non-contaminated dried litter can be reused after treatment and composting, improving sustainability.

Thus, poultry litter management also contributes to environmental protection, waste recycling, and circular agriculture.

Economic and Welfare Implications of Proper Litter Management

Good litter management directly results in:

- Improved feed efficiency and growth rate
- Lower medication and veterinary costs
- Reduced carcass condemnation
- Higher market value of birds
- Better worker comfort and occupational safety
- Compliance with animal welfare standards

Conversely, poor litter conditions lead to production inefficiencies, disease outbreaks, consumer dissatisfaction, and financial losses, especially during rainy seasons.

Conclusion

Litter management during the rainy season is a critical determinant of poultry health, productivity, and farm profitability. Excess moisture, if not controlled, creates a cascade of problems including ammonia buildup, respiratory diseases, footpad lesions, poor growth, and carcass defects. Scientifically sound practices such as maintaining optimal litter moisture (around 25%), ensuring effective ventilation, managing water systems, regular raking, and timely replacement of wet patches can transform litter from a disease risk into a productivity-supporting resource.

By adopting systematic litter management strategies, poultry farmers can maintain bird comfort, enhance welfare, improve biological performance, and maximize economic returns even under challenging climatic conditions. Proper litter management is therefore not merely a housekeeping task but a core component of sustainable and profitable poultry production systems.

