

Popular Article

Prebiotic-Enriched Foods: A promising functional food category

Ayushi Patel, Sreeja V, Kiran S and Masi Imdadhusain Abidali Dairy Microbiology Department, SMC College of Dairy Science Kamdhenu University, Anand, Gujarat DOI:10.5281/ScienceWorld.15357294

Abstract

The global rise in demand for functional foods reflects growing consumer interest in health-enhancing dietary options. Prebiotics are non-digestible food ingredients that enhance host health by selectively stimulating beneficial gut bacteria. Often termed soluble fiber, prebiotics offer biological effects, reduce caloric content, diminish cariogenic properties, and enhance food texture. The incorporation of prebiotics into different food matrices leads to beneficial modifications in their physicochemical, rheological, sensory, and functional properties. The extent of these changes varies based on the type of the foods and the specific prebiotic used.

Keywords: Health benefits, gut microbiota, inulin, probiotics, food ingredient, oligosaccharide

Introduction

The demand for functional foods—products that offer health benefits beyond basic nutrition—is rising as more consumers prioritize their well-being. Among these, prebiotic enriched foods are gaining momentum owing to their proposed health benefits. The concept of prebiotics was initially proposed by Glenn Gibson and Marcel Roberfroid in 1995, defining prebiotics as non-digestible food components that selectively enhance the growth and activity of specific colon bacteria, thus improving host health. The International Scientific Association of Probiotics and Prebiotics (ISAPP, 2013) later refined this definition, describing prebiotics as substrates selectively utilized by host microorganisms to confer health benefits (Gibson *et al.*, 2017). Prebiotics offer advantages over probiotics due to their stability, resistance to processing, and positive impact on food texture and flavor. Additionally, they withstand acids, proteases, and bile salts in the gastrointestinal tract, enhancing their efficacy.

Criteria for classifying a food ingredient as a prebiotic

According to Gibson *et al.* (2017), a food product is classified as a prebiotic if it meets several key criteria. First, it must resist gastric acidity, absorption in the gastrointestinal tract, and digestion by mammalian enzymes, allowing it to endure the harsh conditions of the stomach without being broken down by the host's own enzymes. Second, a prebiotic should be fermentable by gut bacteria, leading to the production of beneficial compounds. Lastly, it must selectively promote the growth and activity of beneficial gut microbiota, thereby supporting the host's health and well-being. The ability to specifically stimulate beneficial gut bacteria is a crucial aspect of its function.

Types of Prebiotics

Beyond carbohydrates, non-carbohydrate prebiotics like polyphenols—found in tea, coffee, red wine, and fruits—enhance gut microbiota composition. Resistant starch also functions as a prebiotic by reaching the colon intact, serving as a substrate for beneficial bacteria. Additionally, certain peptides and amino acids may support specific gut microbes. Synthetic prebiotics are being developed for more targeted microbiota modulation, offering potential advantages over natural sources (Bedu-Ferrari et al., 2022). Expanding research continues to uncover new prebiotic compounds, broadening their applications for gut health and overall well-being. Figure 1 depicts a broad classification of prebiotics.

Established	Inulin, FOS, GOS, Lactulose	
Potential	 Oligosaccharides -(XOS, RFO, IMO, Isomaltulose Polyols -(Mannitol, Lactitol, Xylitol) 	
	Non-starch polysaccharides -(Pectin, Lignin, Beta-glucan) Starch polysaccharides - (resistant starch)	
Emerging	Carotenoids, Phenolic compounds, Vitamins, PUFAs	

Fig 1. Broad classifications of prebiotics (Sourced from Rosa et al, 2021)

FOS=Fructooligosaccharides, GOS=Galacto-oligosaccharides, XOS=xylo-oligosaccharides,

IMO=Maltooligosaccharides, RFO= Raffinose family oligosaccharides

Prebiotics approved by FSSAI for incorporation into foods

The Food Safety and Standards Authority of India (FSSAI) has approved various prebiotics, including polydextrose, isomalto-oligosaccharides, XOS, inulin, lactulose, resistant dextrin, and GOS. Certain sugar alcohols such as lactitol, sorbitol, and maltitol are also included. FSSAI sets a

recommended daily intake of up to 40g for adults, with new prebiotics being evaluated for inclusion based on scientific evidence (FSSAI, 2022).

Health Benefits of Prebiotics

Prebiotics selectively stimulate beneficial gut bacteria, promoting host health. By stimulating the intestinal microbiota, prebiotics influence fermentation activity and short-chain fatty acid levels, contributing to health benefits. Studies have explored their effects on bacterial growth and acidification, cell line adherence, antimicrobial properties, gastric tolerance, adhesion abilities (Parhi et al., 2021), and biofunctional properties. Claimed health benefits of selected prebiotics are depicted in Table 1.

Prebiotic	Disease condition	Study model	Claimed health benefits
Inulin	Ulcerative colitis (UC) management	Randomised, double-blind, crossover placebo-controlled study with 24 patients	Reduced the endoscopic and histological pouchitis disease index score, lowered gut pH, and reduced secondary bile acid and <i>Bacteroides fragilis</i> in faecal samples Increased gut Bifidobacteria
Lactulose	Crohn's disease (CD) and UC	Consumption of 20 g lactulose per day	Reduction in disease symptoms
Oligofructose (OF)	Antibiotic- Associated Diarrhoea	Daily ingestion of 12 g of OF in 142 patients with <i>Clostridium difficile</i> -induced diarrhoea	Reduced episodes of diarrhoea
Inulin	Traveller's diarrhoea	244 healthy subjects travelling to high- or medium-risk destinations for traveller's diarrhoea received either 10 g of inulin or placebo for 2 weeks before travelling and then for the 2 weeks they were away	Lower prevalence of diarrhoea in the prebiotic group, and less severe attacks of diarrhoea
OF and inulin mixture together with <i>Lactobacillus</i> <i>rhamnosus</i> GG and <i>Bifidobacterium</i> <i>lactis</i> Bb-12	Colon cancer	12 weeks double blind placebo-controlled trial in patients with cancer and polypectomised individuals.	Significant reduction in colorectal cell proliferation and genotoxicity Increased intestinal barrier function.
Inulin		Rat study	Inhibition against the formation of aberrant crypt foci (ACF), a biomarker for colon cancer
Inulin and <i>L</i> . <i>acidophilus</i>		Rat study	Pronounced reduction of ACF in the distal parts of the colon
Fructans	Calcium absorption and bone health	Rat studies	Enhancement of calcium absorption
		Human studies	

Table 2. Prebiotics and its claimed human health benefits

Inulin-type fructans		100 young adolescents received 8g/day of short- and long-chain inulin fructans for a year	Significant increase in calcium absorption and greater bone mineral density
Oligofructose	Magnesium absorption Relief from constipation	post-menopausal women	Increased Magnesium absorption
Oligofructose	Obesity	48 healthy adults with a body mass index (in kg/m2) >25	Reduction in body weight of 1.03- 0.43 kg with Oligofructose supplementation

Sourced from: Ashwini et al, 2019 and others

Conclusion

With ongoing research, prebiotics are increasingly recognized not just for their nutritional value but also as essential components of functional foods designed to enhance gut health, immunity, and overall well-being. The selection of a prebiotic for a food product depends on its intended purpose and the specific food matrix, as different prebiotics interact uniquely with foods, leading to various technological modifications. Similarly, the health benefits of prebiotics vary depending on the specific type consumed. Therefore, understanding prebiotic-enriched functional foods, their role, and their associated benefits is essential.

References

- Ashwini, A., Ramya, H.N., Ramkumar, C., Kakarl, R.R., Raghavendra, V., Kulkarni, V., Abinaya, S. N., Anjanapura, V. R., 2019. Reactive mechanism and the applications of bioactive prebiotics for human health: Review. Journal of Microbiological Methods 159 (2019) 128–137. https://doi.org/10.1016/j.mimet.2019.02.019
- Bedu-Ferrari, C., Biscarrat, P., Langella, P., & Cherbuy, C. (2022). Prebiotics and the human gut microbiota: From breakdown mechanisms to the impact on metabolic health. *Nutrients*, 14(10), 2096. https://doi.org/10.3390/nu14102096
- FerreiraVC ·Tiago Linhares Cruz Tabosa Barroso1Rafael Gabriel da Rosa1 ·Luciana de Siqueira Oliveira(2023). An overview of prebiotics and their applicationsin the food industry. European Food Research and Technology(2023)249:2957–2976.https://doi.org/10.1007/s00217-023-04341-7
- Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., ... & Reid, G. (2017). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. *Nature reviews Gastroenterology & hepatology*, 14(8), 491-502. https://doi.org/10.1038/nrgastro.2017.75
- International Scientific Association for Probiotics and Prebiotics. (2013) https://isappscience.org/forscientists/resources/probiotics/
- Parhi, P., Song, K. P., & Choo, W. S. (2021). Viability, storage stabilityand *in vitro* gastrointestinal tolerance of *Lactiplantibacillus plantarum* Grown in model sugar systems with inulin and fructooligosaccharide supplementation. *Fermentation*, 7(4), 259. https://doi.org/10.3390/fermentation7040259
- Rosaa M C, Carmoa M R S, Balthazar, C F (2021). Dairy products with prebiotics: An overview of the health benefits, technological and sensory properties. International Dairy Journal 117 (2021) 105009.

