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Abstract

Climate change threatens global agriculture through rising temperatures, unpredictable
rainfall, and extreme weather, reducing crop yields. Genomic selection (GS), using high-
throughput genotyping and predictive modelling, enables breeders to efficiently select traits
like drought tolerance, heat resilience, and stable yield. This article reviews GS fundamentals,
models, and the integration of machine learning and multi-omics data, with case studies in
rice, while discussing challenges and opportunities for implementing GS in diverse and
resource-limited environments.
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Introduction

Climate change is impacting agriculture, with crop yields projected to drop 10-25%
by 2050 due to drought and heat stress (IPCC, 2022). Conventional breeding is often too slow
to keep up. Genomic selection (GS), introduced by Meuwissen et al. (2001), uses genome-
wide markers to predict breeding values for complex traits, reducing the need for extensive
field phenotyping. GS accelerates selection cycles and improves traits critical for climate
resilience, such as drought and heat tolerance. Advances in high-throughput genotyping,

phenotyping, and machine learning have further enhanced GS. This article reviews GS
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applications in developing climate-resilient rice, highlighting methods, achievements,
challenges, and prospects for food security.
Genomic Selection: Definition
Genomic selection is a breeding approach that uses genome-wide molecular markers
to predict the genetic merit of individuals, allowing early and accurate selection for complex
traits (Meuwissen et al., 2001).
Genomic Selection Framework
GS involves training a statistical model to predict genomic estimated breeding values
(GEBVs) using a training population with both genotypic (e.g., SNP markers) and phenotypic
data. The model is then applied to a breeding population to select individuals with desirable
traits. Key steps include:
e Genotyping: High-density SNP arrays or genotyping-by-sequencing (GBS) to capture
genome-wide variation.
e Phenotyping: Precise measurement of climate-relevant traits (e.g., yield under
drought, heat stress response) in controlled or field conditions.
e Model Training: Statistical models (e.g., GBLUP, Bayesian methods) or machine
learning algorithms (e.g., random forests, neural networks) to correlate genotypes with
phenotypes.
e Validation and Selection: Cross-validation to assess prediction accuracy, followed by
selection of high-GEBYV individuals for breeding.
Statistical Tools and Packages for Implementing Genomic Selection

Several tools and packages have been developed for the evaluation of genomic
prediction and implementation of GS, some of which are discussed in table 1.
Table 1. Overview of Statistical Tools and Packages for Implementing Genomic Selection in
Crop Breeding.
Model / Tool (Full Form) Type Key Features

RR-BLUP (Ridge Regression Best | Linear / | Estimates marker effects assuming

Linear Unbiased Prediction) Mixed equal variance; additive effects

GBLUP (Genomic Best Linear | Linear /| Uses genomic relationship matrix;

Unbiased Prediction) Mixed like RR-BLUP
BRR (Bayesian Ridge Regression) Linear /| Linear model with shrinkage of
Mixed marker effects
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BayesA (Bayesian Model A) Bayesian | Marker-specific variances; normally
distributed effects

BayesB (Bayesian Model B) Bayesian | Some markers zero effect; others
variable

BayesC / BayesCn (Bayesian Model C | Bayesian | Mixture of BayesA and BayesB
/ Cm)

Bayes LASSO (Bayesian Least | Bayesian | Bayesian shrinkage using LASSO
Absolute Shrinkage and Selection

Operator)

RF (Random Forest) Machine | Tree-based ensemble; captures non-
Learning | linear effects

SVM (Support Vector Machine) Machine | Kernel-based regression/classification

Learning

MT-BLUP (Multi-Trait Best Linear | Multi- Uses correlations between traits for

Unbiased Prediction) Trait prediction

MT-Bayes (Multi-Trait Bayesian | Multi- Multi-trait Bayesian model

Model) Trait /

Bayesian
STGS (Single-Trait Genomic | Hybrid / | Single-trait GS; supports RR-BLUP,
Selection) Tool LASSO, SVM, RF, ANN
MTGS (Multi-Trait Genomic | Hybrid / | Multi-trait  GS; supports MRCE,
Selection) Tool KMLASSO, MLASSO
rrBLUP package (R package rrBLUP) | Tool R package; linear models and cross-

validation

Case Study: Genomic Selection for Grain-Filling Characteristics in Rice

Grain filling strongly influences rice yield but is hard to improve through conventional
breeding due to its quantitative nature and environmental sensitivity. Yabe et al. (2018)
evaluated ~400 rice accessions using ~700K SNPs and applied GS models (GBLUP, BayesA,
BayesB), achieving prediction accuracies of 0.45-0.70. GS outperformed traditional selection,
offering higher accuracy and greater expected genetic gain, showing its potential to enhance

grain-filling efficiency and yield stability under climate stress.
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Advantages of Genomic Selection (GS)

50%.

Faster Breeding Cycles: Early-generation selection reduces breeding duration by 30—

Improved Prediction Accuracy: Captures additive and non-additive effects for
complex traits.

Multi-Trait Selection: Simultaneously predicts correlated traits for balanced
improvement.

Integration of Multi-Omics Data: Enhances accuracy by capturing G x E interactions.
Efficient Resource Use: Reduces large-scale field trials, saving time and costs.

Climate Resilience: Targets drought, heat, and salinity tolerance for stable yields.

Challenges

Training Population Diversity: Narrow genetic bases reduce model applicability;
include landraces/wild relatives.

Environmental Variability: G X E interactions require multi-environment trials.

Cost & Accessibility: High-throughput genotyping is expensive; low-cost GBS and

shared resources help.

Factors Affecting Prediction Accuracy

Marker Density: Higher density improves accuracy; moderate density (~2000 SNPs)
often sufficient.

Bayesian Model Convergence: High-density markers may slow MCMC in Bayes
models.

SNP Quality: Intergenic SNPs and MAF > 0.1 improve prediction.

Population Size & Relatedness: Larger, related populations yield higher accuracy.
Trait Heritability: High-heritability traits predict better; low-heritability traits need
more data.

Model Choice: BLUP, GBLUP, RR-BLUP, Bayesian, RKHS handle complex traits
well.

Missing Data: Multi-trait models (MTGS) can compensate using correlated traits.

Future Directions and Conclusion:

Genomic selection (GS) is a powerful tool for developing climate-resilient crops,

offering high prediction accuracy and shorter breeding cycles. Integrating GS with speed

breeding, gene editing (e.g., CRISPR), and portable sequencing technologies can accelerate

crop improvement, even in resource-limited regions. While successful in maize and rice,

wider adoption requires addressing costs, germplasm diversity, and environmental variability.
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Collaborative frameworks and public-private partnerships are essential to make GS accessible
and secure global food systems against climate change.
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